Fermentation Technologies for the Optimization of Marine Microbial Exopolysaccharide Production
نویسندگان
چکیده
In the last decades, research has focused on the capabilities of microbes to secrete exopolysaccharides (EPS), because these polymers differ from the commercial ones derived essentially from plants or algae in their numerous valuable qualities. These biopolymers have emerged as new polymeric materials with novel and unique physical characteristics that have found extensive applications. In marine microorganisms the produced EPS provide an instrument to survive in adverse conditions: They are found to envelope the cells by allowing the entrapment of nutrients or the adhesion to solid substrates. Even if the processes of synthesis and release of exopolysaccharides request high-energy investments for the bacterium, these biopolymers permit resistance under extreme environmental conditions. Marine bacteria like Bacillus, Halomonas, Planococcus, Enterobacter, Alteromonas, Pseudoalteromonas, Vibrio, Rhodococcus, Zoogloea but also Archaea as Haloferax and Thermococcus are here described as EPS producers underlining biopolymer hyperproduction, related fermentation strategies including the effects of the chemical composition of the media, the physical parameters of the growth conditions and the genetic and predicted experimental design tools.
منابع مشابه
Optimization of Bioreactor Cultivation Parameters by Taguchi Orthogonal Array Design for Enhanced Prodigiosin Production
One of the major steps toward the industrialization of the microbial product(s) is to optimize the cultivation conditions at the large-scale bioreactor and successfully control the microbial behavior within a large scale production environment. Statistical Design of Experiment was proven to optimize a vast number of microbial processes to achieve robustness and explore possible interactions...
متن کاملOptimization of Microbial Hydrogen Production from Maize Stalk Using an Isolated Strain
Experimental designs were applied for optimizing media and process parameters for hydrogen production from maize stalk hydrolyzate by a newly isolated facultative strain.Plackett-Burman design was used to identify the significant components and using this method the media components - glucose, yeast extract, malt extract, peptone, and NaCl were identified as signi...
متن کاملOptimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium.
The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a...
متن کاملAnti-MRSA activity of a bioactive compound produced by a marine Streptomyces and its optimization using statistical experimental design
Objective(s): To address the alarming problem of methicillin-resistant Staphylococcus aureus (MRSA), herein, a marine Streptomyces capable of producing an anti-MRSA compound has been studied.Materials and Methods: Strain MN41 was morphologically and physiologically characterized and then, molecularly identified using 16SrRNA analysis. To...
متن کاملIsolation and characterization of exopolysaccharide from biofilm producing marine bacteria
Marine bacterial exopolysaccharides are fascinating industrial uses and presence of bioactive compounds. In this present study , Exopolysaccharide producing Micrococcus sp isolated from Arabian Sea and was identified by morphological and biochemical characteristics. Exopolysaccharide characterized by Infra Red spectroscopy and Antibacterial activity done by disc diffusion method with the clinic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2014